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A model fluid system whose intermolecular forces consist of the short range part
characterizing usual stable fluid and the long range part of Kac-type is con-
sidered. When the ratio of the force ranges is large enough, the system can be
described by regarding the system having only short range interactions as a ref-
erence fluid treated as a continuum, on which long range forces acting among
tiny fluid elements are superimposed. We discuss the glassy behavior of this
model relating it to the mode coupling theory and using real replica theory.
These theories lead to the two equations for non-ergodicity parameter which are
totally different from each other. We argue that our model can be a basis for
examining nature of the drastic approximations entering derivations of the
mode coupling equations. We further explore the possibility of developing the
dynamical real replica approach for our model system with the hope of provid-
ing a framework to cope with different time scales characterizing complex glassy
behavior.

KEY WORDS: Glassy behavior; van der Waals; replica approach; mode
coupling theory.

1. INTRODUCTION

The problem of supercooled liquids and glass transiton is said to be
characterized by short length scales of several to a few tens of Ångstroms



and long time scales ranging from a few nanoseconds to more than a
year. (1) Because of this variation in scales, treatment of a real glassy liquid,
especially its dynamical properties has gotten to be an extremely difficult
problem. Existing analytical approaches to dynamics (1) are much hampered
by this difficulty despite surprising successes in describing in some detail
the behavior before the onset of glass transitions. (1) There appears to be no
first principles theory of comparable success describing what happens after
onset of the predicted ergodic-nonergodic transition including dynamics. In
order to get further insights into the problems of glass transitions including
dynamics, it should be useful to construct a model where this microscopic
length scale can be extended to a macroscopic level (or, more accurately, to
a mesocopic level). In such a model both space and time scales are clearly
separated into microscopic and macroscopic (or mesoscopic) scales which
should make clear theoretical analyses possible.

There are in nature glassy systems which seem to achieve such separa-
tion. Examples are colloidal systems (for instance ref. 2) and physical gel
systems (for instance ref. 3). These, however, are beset with other compli-
cations. For colloids, treatment of hydrodynamic interactions presents a
formidable problem. Although such interactions are believed to influence
only short time behavior well separated from long time glassy behavior,
there appears to be no convincing demonstration of this fact. Physical gels
have a relevant mesoscopic length scale, but they are complicated generally
ill-defined polymer systems. For instance, polymerization indices of poly-
mers constituting such sytems are not easy to control.

Here we propose a model which is a dynamical extension of van der
Waals model of fluid which played such a prominent role in the develop-
ments of phase transition theories. Here physically important behaviors
such as phase transitions and glassy dynamics are attributed to long range
interactions whereas short range forces mainly serve to endow the reference
fluid the properties of a stable liquid with no unusual behavior. The short
distance aspects can then be safely treated by macroscopic means. In other
words a fluid in the absence of long range interactions can be treated
merely as some stable reference fluid whose properties can be put in by
hand according to our convenience. This is especialy relevant for dynamics
since microscopic dynamical treatment of dense fluid is an old prohibitively
difficult problem. In other words, we can now treat glassy dynamics of our
van der Waals liquid by mapping it onto a nonlinear and nonlocal field
theory. This is one crucial novel feature of our approach

Here we comment on the meaning of model construction which
generally contains unrealistic elements. (1) If the model is nontrivial and is
exactly solvable it has interests in its own right for mathematical physicists.
(2) If the model can be treated with controlled approximation even though
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not exactly solvable, the model permits sharpening of concepts introduced
in computational studies or by crude approximations. (3) There are
possibilities of extracting features that can go beyond the specific model.
Their correct interpretations and proper generalizations might lead to new
insights into nature of real systems.4

4 As for the toy model recently introduced by us (4, 5) we found that (a) a new kind of gross
variable other than the usual density and velocity variables emerge in the region where non-
ergodicty is expected, (2) emergence of non-ergodic states is intimately connected to the sin-
gular nature of the diffusion matrix of the reduced Fokker–Planck equation for the density
variables.

There already exist models for glassy behavior with long-range inter-
molecular potentials. (7–10) The dynamics in these models is introduced
through Monte-Carlo algorithm or by writing down ususal time-dependent
Ginzburg–Landau equations where glassy behavior entirely comes from
Hamiltonians or free-energy functionals. In contrast, one main objectve of
this work is to propose a model of fluid where dynamics naturally occurs
through hydrodyanmic equations for the ‘‘reference fluid’’ which will be
precisely defined below. We shall see that the glassy behavior of fluid can
not be ascribed entirely to the free energy functional.

Such a clear-cut dynamical van der Waals model was used before in
connection with critical dynamics (11) but has not yet been proposed for
studying glassy behavior to the author’s knowledge.

This paper is organized as follows. In Section 2 we present our model
whose equilibrium properties are given in Section 3. Section 4 discusses the
mode coupling theory (MCT) on the basis of our model. In Section 5 we
consider an application of the real replica approach to the model followed
in Section 6 by discussion of possible nonergodic states where close corre-
spondence of our model with stripe glass (7) is indicated. In Section 7 we
attempt dynamical extension of real replica theory. At this moment there is
no generally accepted approach to tackle complicated glassy dynamics
having many different time scales. (12) So this section proposes our modest
first step. In Section 8 we derive the model from a microscopic starting
point.

2. THE MODEL CONSTRUCTION

We consider a certain reference fluid which is superimposed with an
additional long range pair interaction. Basic philosophy of the model was
discussed in connection with critical dynamics of fluids in ref. 11. Namely,
we initially consider a classical many particle system interacting with short
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range forces of range r0 and long range forces of range l. We assume the
ratio to be extremely small: r0/l ° 1. We focus on the processes occurring
over the length scales of l or longer. Then it is legitimate to treat the system
as consisting of a reference fluid with only short range interactions where
we can superpose long range interactions regarded as interactions among
tiny but macroscopic elements of the reference fluid. Here we must assume
the reference fluid to be a stable fluid devoid of any unusual behavior like
phase transitions.

In this section we first write down a complete model equation for a
single-component fluid. We then give its simplified version which can be
used for supercooled liquids. We also mention equations more appropriate
for solids.

2.1. Full Model Equation of Single-Component Fluid

At the beginning we introduce the notation for various quantities
pertaining to the reference fluid as follows. (6)

r(r, t): number density, m: particle mass, v(r, t): velocity field

p(r, t): local pressure, g: shear viscosity, z: bulk viscosity

l: thermal conductivity, T(r, t): local tempertature

sjl(r, t): jl-component of the local stress tensor containing

dissipative and fluctuating parts

q(r, t): the local heat flux density containing

dissipative and fluctuating parts

s(r, t): the local entropy per molecule

The long-range interaction potential U(r) can generally be taken to be of
the following Kac form: (13)

U(r)=l−dUg(r/l) (2.1)

where d is the dimensionality of space and Ug(x) is a function such that

l−d F dr Ug(r/l) < . (2.2)
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With this notation, the set of model equations is written as follows,

“

“t
r(r, t)+N · r(r, t) v(r, t)=0 (2.3)

r(r, t) 5 “

“t
vj(r, t)+v(r, t) · Nvj(r, t)6= −

1
m

“

“xj
p(r, t)+

1
m

“

“xl
sjl(r, t)

− r(r, t)
“

“xj
F drŒ

U(r − rŒ)
m

r(rŒ, t)
(2.4)

r(r, t) T(r, t) 5 “

“t
+v(r, t) · N6 s(r, t)=

1
2

sjl(r, t) 1“vj(r, t)
“xl

+
“vl(r, t)

“xj

2

− N · q(r, t) (2.5)

where the summation convention is used for repeated indices. The above
equations are to be supplemented by the definitions of the sŒs and q as
follows,

sjl(r, t) — g 1“vj(r, t)
“xl

+
“vl(r, t)

“xj
−

2
3

djlN · v(r, t)2

+zdjlN · v(r, t)+Rjl(r, t) (2.6)

q(r, t) — − l NT(r, t)+R(r, t) (2.7)

where the random forces the RŒs satisfy the following fluctuation-dissipa-
tion relations:

ORjl(r, t) Rmn(rŒ, tŒ)P=2kBT(g(djmdln+djndlm)+(z − 2
3 g) djldmn)

× d(r − rŒ) d(t − tŒ) (2.8)

ORj(r, t) Rl(rŒ, tŒ)P=2lkBT2djld(r − rŒ) d(t − tŒ) (2.9)

ORjl(r, t) Rm(rŒ, tŒ)P=0 (2.10)

Here we want to make some remarks.
• Nature of the Quantities Appearing in this Model. Here all the

hydrodynamic variables and transport coefficients are for the reference
fluid valid over the length scales such that r0 ° (length scale) < l. One can
also discuss truly macroscopic processes occurring over the scales much
longer than l on the basis of the proposed model equation. The variables as
well as transport coefficients entering these macroscopic equations are
generally quite different from those appearing in this section. See, e.g.,
ref. 11.
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• Derivation of the Model Equations (2.3)–(2.5). Equation (2.3) is
the continuity equation always valid when the reference fluid is conserved.
Equation (2.5) in the absence of sjl and q expresses isoentropic change.
Equation (2.4) in the absence of sjl expresses Euler’s equation modified in
the presence of a slowly varying external force field per molecule denoted
as g(r, t), that is,

5 “

“t
+v(r, t) · N6 v(r, t)=−

1
mr(r, t)

Np(r, t)+g(r, t) (2.11)

We can then choose

g(r, t)=−N F drŒ
U(r − rŒ)

m
r(rŒ, t) (2.12)

Dissipative and noise terms can then be added, which are not affected by
slowly varying external force field which can functionally depend on the
density profile r(rŒ, t) elsewhere. More about this derivation will be given
in Section 8.

• Consistency. It was shown in ref. 14 that the Landau–Lifshitz
theory of hydrodynamic fluctuation is consistent with the known equilib-
rium properties of fluctuations only if the quantities T2l, Tg and Tz are
constant independent of their space-time coordinates where T, l, g and z

can separately depend on these coordinates. The source of the difficulty is
attributed to the presence of multiplicative noise. That is, the r.h.s. of (2.5)
containing a term,

1
2

Rjl(r, t) 1“vj(r, t)
“xl

+
“vl(r, t)

“xj

2

This deficiency of the Landau–Lifshitz theory was rectified in subsequent
investigations. (15) Here we refrain from considering this problem since we
will be concerned mostly with simplified models in which only the local
density and local velocity variables enter.

• Fluctuations. Since the reference fluid is macroscopic on the scale
between r0 and l, its fluctuations can be safely assumed to be Gaussian.
However, this is not always exactly true. For instance in the vicinity of a
critical point in which the Ginzburg criterion5 is violated, non-Gaussian

5 Here this is ldE2 − d/2 ± 1, E being the dimensionless distance from criticality.

density fluctuations are responsible for non-mean field critical exponents.
Nevertheless, for supercooled liquids and glasses, density fluctuations with
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wavelength comparable to l would be most relevant. Still, large amplitude
frozen density fluctuations associated with spatial heterogeneity below the
so-called mode coupling Tc will not be Gaussian.6 Even here, fluctuations

6 Here the word ‘‘fluctuation’’ may not be appropriate.

around heterogeneous density profile in each ergodic component state are
Gaussian in this model. The model could provide a good framework for
classifying different types of fluctuations according to their amplitudes and
space and time scales, which play different roles in different situations like
in critical phenomena or non-ergodic states.

• Strategy. As it stands the model looks quite complicated since we
have used for the reference fluid full nonlinear hydrodynamic equations for
a one-component fluid. However, drastic simplifications are possible in
individual applications. For instance in solids the hydrodynamic equation
can be replaced by simple diffusion or relaxation equation. Such simplifi-
cations will be discussed below.

2.2. Simplified Fluid Equation

We consider simplifications of the model which will be appropriate to
treat supercooled liquids and glasses. Here we will be concerned with
length scales of the order of l. We expect that heat transfer is rapid enough
that the variables s(r, t) will not play a crucial role, and will be dropped.
Further more, the temperature T is assumed to be a constant. In the
following we drop terms nonlinear in v which do not play important roles
here. We also retain only the longitudinal component of v, that is,
N × v=0.

The simplified equation of motion is

“

“t
r(r, t)+N · r(r, t) v(r, t)=0 (2.13)

“

“t
v(r, t)=−

1
mr0

Np(r, t)+nN2v(r, t)

− N F drŒ
U(r − rŒ)

m
r(rŒ, t)+R(r, t) (2.14)

where n — (4
3 g+z)/(mr0) is the kinetic longitudinal viscosity, r0 being the

constant average density. The thermal noise R(r, t) satisfies

OR(r, t) R(rŒ, tŒ)P=
2kBTn

m2r0
NNŒd(r − rŒ) d(t − tŒ) (2.15)
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Here we further linearize the local pressure p(r, t), which is regarded as a
function of r(r, t), with respect to dr(r, t) — r(r, t) − r0 to find

p(r, t)=p(r(r, t))=p(r0)+1dp(r)
dr

:
p=p0

2 dr(r, t)=p(r0)+mc2
0 dr(r, t)

(2.16)

where c0 is the sound speed of the reference fluid. Hence (2.14) is rewritten
as

“

“t
v(r, t)=−

c2
0

r0
Nr(r, t)+nN2v(r, t) − N F drŒ

U(r − rŒ)
m

r(rŒ, t)+R(r, t)
(2.17)

Note that the above equation is completely linear in v and dr.
If desired the pressure term need not be linearized. For instance, short-

range repulsive interaction can be taken into account by assuming p(r)=
kBT/(r−1 − b), b being some positive number.

Further simplifications can be achieved if v(r, t) is eliminated between
(2.13) and (2.17) and we keep only the nonlinearity associated with the long-
range force potential U(r). The result is

m
“

2

“t2 dr(r, t)=mc2
0N2 dr(r, t)+r0N2 F drŒ U(|r − rŒ|) dr(rŒ, t)

+nmN2 “

“t
dr(r, t)+N · dr(r, t) N F drŒ U(|r − rŒ|) dr(rŒ, t)

+R(r, t) (2.18)

where

R(r, t) — − r0mN · R(r, t) (2.19)

OR(r, t) R(rŒ, tŒ)P=2kBTr0nN4 d(r − rŒ) d(t − tŒ) (2.20)

For the case of solids absence of the velocity field variable further
simplifies the problem. One can write down the ususal time-dependent
Ginzburg–Landau type equations for the order parameter with or without
the conservation law where the Ginzburg–Landau free energy fucntional
contains long-range potentials. We shall not dwell on that since this
is straightforward although we shall come back to his type of model in
Section 7.
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In closing this section we emphasize that a reference system is chosen
to be always stable with weak Gaussian noise. The usual gradient terms
appearing in Ginzburg–Landau type free energy functional are not needed.
Non-Gaussian fluctuations near criticality and emergence of spatial
heterogeneity in non-ergodic glassy states are due to combined effects of U
and reference fluid properties as we shall see below.

3. EQUILIBRIUM PROPERTIES OF THE MODEL

We discuss equilibrium properties of the model when long wavelength
fluctuations crucial in critical phenomena are neglected. The equilibrium
density distribution functional De({r}, T) is given, apart from normaliza-
tion factor, by

De({r}, T) — exp 5− bF ref({r}, T) − b 1
2 F dr F drŒ U(r − rŒ) r(r) r(rŒ)6

(3.1)

where b — 1/(kBT) and F ref({r}, T) is the Helmholtz free energy func-
tional of the reference fluid7 which depends on the temperature and

7 Quantities referring to the reference fluid is shown by a superfix ref.

functionally on the density profile.

3.1. Mean Field Equilibrium Properties

The mean field theory assumes that De({r}, T) has a sharp maximum
at some {r} with small fluctuations which we neglect here. For uniform
state this maximum occurs at r(r)=r0 — N/V, N and V being the total
number of particles and the system volume, respectively. Hereafter we
consider the system with fixed N which will not be written explicitly unless
needed. The Helmholtz free energy is,

F(V, T)=F ref(V, T)+
N2

2V
U0 (3.2)

where F ref(V, T) — F ref({r=r0}, T) is the Helmholtz free energy of the
reference system and

Uk — F dr U(r) e ik · r (3.3)
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That is, U0=> dr U(r). Hence the entropy is

S=−
“F(V, T)

“T
:
V

=S ref (3.4)

Likewise

P=P ref+
N2

2V2 U0 (pressure) (3.5)

E(S, V)=E ref(S, V)+
N2

2V
U0 (internal energy) (3.6)

q−1
T =(q ref

T )−1+1N
V
22

U0 (inverse isothermal compressibility) (3.7)

The pressure equation above can be found in refs. 16 and 17. The last
equation above can be readily extended to the wave vector dependent
inverse susceptibility or the inverse scatttering structure function S−1

k if the
wave number is of the order of the inverse range l−1 of U as ref. 18

q−1
T (k)=(kBTr0) S−1

k =(q ref
T )−1+1N

V
22

Uk (3.8)

We can extend the foregoing to spatially non-uniform situations with
length scale equal to or greater than l. The total free energy functional is

F({r}, T)=F dr f ref(r(r), T)+1
2 F dr F drŒ U(r − rŒ) dr(r) dr(rŒ) (3.9)

where f ref(N/V, T) — F ref(V, T)/V is the free energy density of the refer-
ence systems in a spatially uniform state which naturally includes the
entropy contribution associated with the reference system. An additional
contribution to the total thermodynamic entropy arises from the density
profile probability distribution (3.1).

Now, there should be a term linear in dr in (3.9) as follows,

r0 F dr F drŒ U(r − rŒ) dr(rŒ).

If the system volume V is much greater than the volume l3 in which the
long range interaction is working (we exclude power-law type interaction),
> dr U(r − rŒ) is independent of rŒ. See (2.2). Hence the above linear expres-
sion becomes proportional to > dr dr(r) and vanishes.

1258 Kawasaki



In this subsection we have dropped gradient terms for reference
systems, which are common to Ginzburg–Landau type models because we
have chosen our reference systems to be stable, and hence the local order
parameter will not vary on a microscopic scale of r0. On macroscopic scales
greater than l such gradient terms are generated by performing gradient
expansions of the terms containing long-range forces.

3.2. Free Energy Functional of the Reference Fluid

So far we have not specified the reference fluid free energy functional
which is F ref({r}, T)=> dr f ref(r(r, T)). We therefore focus our attention
on the thermodynamics of the reference fluid. Let us denote the reference
system free energy simply as A(N, V, T) (which was previously denoted as
F ref(V, T)). This takes the form

A(N, V, T)=Va(N/V) (3.10)

where a(r) is the Helmholtz free energy density of the unifrom reference
fluid with the number density r=N/V and T dependence of a was
suppressed since it is always taken to be constant in this subsection. Then

m=1 “A
“N

2
V, T

(chemical potential), P=−1“A
“V

2
N, T

(pressure)
(3.11)

etc.
What we need is the expansion of a(r) around another density r0

which will be identified as the average density of our original nonuniform
system. Putting r=ro+f and denoting derivatives with primes as dX(r)

dr =
XŒ(r), we need

a(r)=a(r0)+aŒ(r0) f+
1
2

aœ(r0) f2+
1
3!

a'−(r0) f3+
1
4!

a''(r0) f4+ · · ·
(3.12)

Combining (3.11) with (3.12) we get

m(r)=aŒ(r), P=−a+raŒ(r)=−a+rm etc. (3.13)

(Note a is a quantity per unit volume, but m is a quantity per one mole-
cule.)

Likewise higher order derivatives are

aœ=mŒ, a'−=mœ, a''=m'−,... (3.14)
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We would like to express these derivatives in terms of the isothermal com-
pressiblity qT(r) and its density derivatives. First note mŒ=(“m(P, T)/“r)T

=(“P/“r)T (“m(P, T)/“P)T=r(“P/“r)T=1/qT. Next we get mœ=( 1
qT

)Œ,
m'−=( 1

qT
)œ, and so forth.

This results in

a(r)=a(r0)+m(r0) f+
1
2
1 1

qT(r0)
2 f2+

1
3!
1 1

qT(r0)
2 −

f3

+
1
4!
1 1

qT(r0)
2'

f4+ · · · (3.15)

Thus in the following we start from the expansion as

a(r)=a(r0)+u1f+1
2 u2f2+1

3 u3f3+1
4 u4f4+ · · · (3.16)

where the coefficients ui are defined by comparison with (3.15).

3.3. Model Free Energy Functional

The free energy functional (3.9) now becomes

F({f}, T)=F dr(1
2 u2f(r)2+1

3 u3f(r)3+1
4 u4f(r)4)

+1
2 F dr F drŒ U(r − rŒ) f(r) f(rŒ)+1

2 VU0r2
0+ · · · (3.17)

where · · · denotes the higher order terms of the expansion of (3.16) and the
preceding term to it is the van der Waals term. Here we do not need a term
with (Nf(r))2 since the length scales of interest are much greater than the
correlation length of the reference fluid which is of the order of r0.

Here we make one simplifying assumption that the coefficient u3

vanishes. Then our model reduces to that of familiar f4 field theory where
instead of the gradient term we have a long-range force term with U. We
write down the final form of F({f}, T) which will be analyzed in Sections 5
and 7:

F({f}, T)=F dr (1
2 u2f(r)2+1

4 u4f(r)4)

+1
2 F dr F drŒ U(r − rŒ) f(r) f(rŒ)+1

2 VU0r2
0 (3.18)

where u2, u4 > 0 due to stability of the reference fluid.
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4. DERIVATIONS OF THE IDEALIZED MODE COUPLING THEORY

EQUATION

Since the mode coupling theory is undoubtedly the most sucessful first
principle dynamical theory of supercooled liquids and glass transitions
above certain crossover temperature, (1, 19, 20) any model or theory that pur-
ports to describe experimentally observed glassy dynamics of fluid must be
able to relate itself to the MCT in the region where the latter is considered
to be valid. This problem is taken up for our model in this section. Our aim
is to derive the known MCT equatation of fluid for our model where
nature of the uncontrolled approximations entering the earlier derivations
can be examined.

4.1. Langevin Equation Approach

This derivation of the MCT equation follows the same method given
in Section 3 of ref. 20 where analogy with Brownian motion theory is used.
We start from the simplified model equations obtained before, (2.18), (2.19)
and (2.20),

We express (2.18) in terms of Fourier components rk(t) of dr(r, t) to
find

m
“

2

“t2 rk(t)= − mw2
krk(t) − nmk2 “

“t
rk(t)+Rk(t)+Rk(t) (4.1)

where

w2
k — k2 1c2

0+
r0

m
Uk

2 (4.2)

Rk(t) — − F
q

k · qUqrk − q(t) rq(t) (4.3)

and >q — 1
(2p)d > dq, d being the dimensionality of space. The constant n is the

bare kinetic viscosity determined by the microscopic thermal noise of
molecular scale Rk(t) by the ususal fluctuation-dissipation relation, with
Rk(t) the Fourier transform of (2.19).

Now we make several approximations or assumptions. (20) In a super-
cooled liquid near the mode coupling critical temperature Tc, n as well as
Rk(t) are not important and will be dropped. On the other hand, Rk(t)
contains many terms of products of the two r’s with different wave vectors.
Hence it will change in irregular manner in time like thermal noise. Thus
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we assume that Rk(t) can be treated as a new thermal noise which replaces
Rk(t). Accordingly the n term is replaced by a term containing the memory
kernel which we denote as Mk(t). The result is the following linear Langevin
equation with memory:

“
2

“t2 rk(t)=−w2
krk(t) − F

t

0
ds Mk(t − s)

“

“s
rk(s)+

1
m

Rk(t) (4.4)

where, denoting time derivative by an overdot,

Mk(t) —
1

m2O|ṙk |2P
ORk(t) R−k(0)P

=
1

mNkBTk2 F
q

F
qŒ

(k · q)(k · qŒ) UqU−qŒ Ork q(t) rq(t) rq k(0) r−qŒ(0)P
(4.5)

which replaces the earlier fluctuation-dissipation relation (2.20). The equa-
tions (4.4) and (4.5) have similar status as the Mori equation for Brownian
dynamics (23) except that our starting point is not completely microscopic.
Here one finds O|ṙk |2P=NkBTk2/m. We now assume that the density fluc-
tuations obey Gaussian statistics. This will permit us to factorize a correla-
tion function of four density fluctuations into a sum of products of two
pair correlation functions. Then, defining the normalized time correlation
function of density and the static scattering structure function, respectively, by

fk(t) —
Ork(t) r−k(0)P

O|rk |2P
(4.6)

Sk —
1
N

O|rk |2P (4.7)

we have

Mk(t)=
r0

2mk2kBT
F

q
|(k · q)Uq+(k · (k − q)) Uk − q |2 SqS|k − q| fq(t) f|k − q|(t)

(4.8)

Here we note that (4.4) without 1
m Rk(t) is satisfied by fk(t):

1 “
2

“t2+w2
k
2 fk(t)=−F

t

0
ds Mk(t − s)

“

“s
fk(s) (4.9)

The equations (4.9) and (4.8) with the initial conditions given, by

fk(0)=1, ḟk(0)=0 (4.10)
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constitute a self-consistent set for the f’s. If Uk is replaced by − kBTCk,8

Ck being Fourier component of direct correlation function of liquid theory, (21)

8 Here Ck is not just for the reference fluid but for the original fluid model including long
range intermolecular forces if the latter can be separated as in our model.

this reduces to the self-consistent equations of Götze and others (1, 19) called
the idealized MCT equation. In this latter equation one generally does not
separate molecular forces into short range and long range parts, hence no
justification can be given for the factorization approximation made there as
well because the direct correlation function C(r) of a liquid is generally
short-ranged. In any event their results suggest that for appropriate choice
of the potential U(r) in our equation we can expect the same kind of
ergodic-nonergodic transition at the mode coupling Tc of our model with
the same kind of properties (1)

The above simple derivation kept silent about the sublte but important
fact that the dynamics of Rk(t) is not the ususal one but the ‘‘projected’’
one in Mori–Zwanzig’s sense. (23, 24) An alternative method is to follow the
procedure of Section 6 of ref. 20.

Another possibility is to apply the procedure of Dawson and the
coworkers (22) which relies on the Gaussian assumption for density fluctua-
tions. This assumption is more naturally acceptable with our model. This is
described in the following subsection.

4.2. The Dawson Approach

An alternative derivation was proposed by Dawson and the coworkers (22)

which avoids use of the projected dynamics mentioned in the preceding
subsection. Here we start from (4.4), (4.2), and (4.3) with (4.2) rewritten as:

w2
k — k2 1c2

0+
r0

m
Uk

2=
k2kBT
mSk

(4.11)

where (3.8) and c2
0=1/(mr0q ref

T ) have been used.9 We rewrite these as

9 Here the entropy variable is dropped, and heat transfer is not considered. Thus we simply
assume that all the processes are isothermal. This simplification is justified since our primary
interest is in slow dynamics in which kinetic energy (or temperature of the reference system)
is equilibrated.

1 “
2

“t2+w2
k
2 rk(t)=Fk(t) (4.12)

Fk(t) —
1
m

Rk(t) (4.13)
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Now, as before, if we regard

Fk(t)=
1
m

Rk(t)=−
1
m

F
q

k · qUqrk − q(t) rq(t) (4.14)

as a random force, but consider the fact that the real random force, here
denoted by fk(t) in the Brownian motion theory of Mori, (23) takes the same
form as (4.14) except that the time dependence is governed by Mori’s
projected dynamics. These two are related by ref. 23

Fk(t)=−F
t

0
ds Mk(t − s)

“

“s
rk(s)+fk(t) (4.15)

Here the memory function is rigorously expressed as

Mk(t)=
Ofk(t) f−k(0)P

O|ṙk |2P
(4.16)

We then replace fk(t), and f−k(0) by the expressions obtained from (4.15),
and we have another rigorous expression,

Mk(t)=
1

O|ṙk |2P
71Fk(t)+F

t

0
ds Mk(t − s)

“

“s
rk(s)2F−k(0)8 (4.17)

Here we introduce the main ansatz of this approach, namely the density
fluctuations with various time arguments obey Gaussian statistics. Then,
since Fk is bilinear in the density fluctuations by (4.14) the second term of
(4.17) drops out. The remainder of (4.17) is identical to (4.5). The Gaussian
ansatz further reduces this to (4.8). This completes the derivation of
self-consistent MCT equation by the Dawson approach.

4.3. Non Ergodicity Parameter

We can discuss within the framework of the MCT the non-ergodicity
parameter defined in ref. 1

fk — fk(t Q .) (4.18)

The equation for this is readily obtained from (4.9) and (4.10) as

fk

1 − fk
=

1
w2

k

Mk(f Q f ) (4.19)

where the form of Mk(f) is given by (4.8).

1264 Kawasaki



4.4. On Justification of the MCT Equation

Central to the above two derivations was the assumption that the
rk(t)’s obey Gaussian statistics, which permits the factorization approxi-
mation of correlation functions of products of four density fluctuations
and dropping of the second term of (4.17). This assumption can never be
justified for usual liquid models where wave numbers involved are of the
orders of inverse intermolucular distances required in MCT. For our van
der Waals model the relevant wave numbers involved are of the orders of
inverse force range l of U(r). This gives rise to a possibility to examine this
crucial Gaussian approximation making use of the fact that this approxi-
mation is trivially valid for the reference system for the wave numbers
concerned. Let us consider as an example the equal time four body corre-
lation function, which can be obtained by knowing the equilibrium four
body distribution function, F4(r1, r2, r3, r4), where the distances between
points, ri and rj with i ] j, are of the orders of l. Since l is much longer
than microscopic correlatation length of the reference system, F4 for the
reference system is trivially factorizable, and deviations from factorized F4

must involve U(r) which gives rise to an additional factor of the smallness
parameter (r0/l)−d. A similar analysis can be made for F3(r1, r2, r3).
Expansion of distribution functions in powers of this smallness parameter
was discussed in ref. 25. There are two problems in applying this argument
to examine validity of the factoriztion approximation in the context of
MCT.

• A naïve expansion in powers of the smallness parameter is inade-
quate since the two body distribution functions F2 that appear in the fac-
torized form of F4 should in fact include effects of U. Thus the factozied
form of F4 already include partial resummation in powers of the smallness
parameter.

• In fact we have to deal with the time-displaced four-body correlation
function rather than the equal time one. This difference will not affect a
naïve expansion in powers of the smallness parameter since the simplified
model equation (2.18) is a linear hydrodynamicc equation in the absence
of U. Thus a naïve expansion in powers of the smallness parameter is
still formally similar with extra nonlinear contributions arising from time
evolution. By the same reason as before, we will need resummation where
effects of the nonlinear U term must be properly handled.

Clearly, examination of the drastic approximations entering the MCT
equation requires careful considerations of the points made here and will
be deferred to future research.
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4.5. Beyond MCT

Here we discuss what to be expected beyond MCT. We go back to the
time-dependent Ginzburg–Landau type model described at the end of
Section 2.2. This model is the continuum version of the Monte Carlo simu-
lation of single-spin-flip (non-conserved) or spin-exchange (conserved)
kinetic Ising models. For F({f}) of the model we may choose the following:

F({f})=F ref({f})+1
2 F dr F drŒ U(r − rŒ) f(r) f(rŒ) (4.20)

F ref({f})=F dr[a(f(r, t))+1
2 b(Nf(r, t))2] (4.21)

with b some positive constant and a(x) a function having a minimum at
x=0. Here we have temporarily restored a gradient term in (4.21).

Let us take a(x) — 1
2 a2x2+1

4 a4x4 with a2, a4 some positive numbers,
and x an arbitrary argument in the function a(x). Since `b/a2 is the
characteristic length of the reference system, we must choose l ± `b/a2,
l the force range of U.

Now, Klein and coworkers (8) found that the static properties of the
model similar to ours have clump states at some low temperature region
where frozen inhomogeneous density profile appears. If this were true for
our fluid model as suggested by static linear instability of the model with a
suitable U(r) against density fluctuations, we should expect the density
fluctuation dr=r − r0 is no longer small and will be frozen. Here dr can
no longer be considered as Gaussian and the self-consistent MCT equation
loses its validity. This is in accord with the general belief (not proof ) that
the mode coupling critical temperature Tc is the point where the Götze type
MCT breaks down.

In the following two sections we shall describe our attempts to go
beyond the MCT.

5. REPLICA ANALYSIS

A promising analytical way to include effects on non-ergodicity is to
employ the new replica trick of Monasson. (26) This will be explained in this
section in the present context. A technique of similar nature was success-
fully applied to the first principle calculation of the low temperature
properties of amorphous solids from the side of liquids at higher tempera-
tures. (27)
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5.1. Real Replica Theory

The real replica approach for our model is described following the
methods of refs. 7 and 26 where the self-consistent screening approxima-
tion (28) was used to implement the theory.

We start from the model (3.18). The equilibrium thermodynamic free
energy including density fluctuation effects A(V, T) is given, denoting
b — 1/(kBT), by

A(V, T) — − b−1 ln F d{f} e−bF({f}, T) (5.1)

and also

A ref(V, T) — − b−1 ln F d{f} e−bFref({f}, T) (5.2)

Now, following (7, 26) we introduce a kind of reference density profile {k} to
which the system is attracted, and also the new free energy functional F as

F({k}) — − b−1 ln F d{f} exp 1 − bF({f}, T) −
g
2

F dr[f(r) − k(r)]22

(5.3)

where g > 0. (We suppress dependence of F on thermodynamic variables
like T other than the density profile.)

We then prepare M replicas and introduce the free energy functional
of replicated system divided by M as

A(M) — − (bM)−1 ln F d{k} e−bMF({k})

= − (bM)−1 ln F D
M

a=1
d{fa} exp 1 − b C

b
F({fb}, T)

−
g

2M
C

b > c
F dr[fb(r) − fc(r)]22

— − (bM)−1 ln F D
M

a=1
d{fa} e−bF({f}, M) (5.4)

where a, b, and c label replicas. Equation (5.4) also defines F({f}, M)
where {f} — {f1}, {f2}, {f3},..., {fM}, superscripts labelling replicas. The
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thermodynamic equilibrium free energy is obtained by taking g Q 0+ and
M=1,

A=A(M=1) (5.5)

Here the term with g has no effects on ergodic states after taking g Q 0+.
On the other hand, if the system is in a non-ergodic state which is trapped
in a metastable state, g has the effect of keeping M replicated systems in
the same metastable state. Then, any observable physical quantity is an
average of such a quantity in each metable state, which is further averaged
over all metastable states with proper weights. We denote such an averaged
quantity by attaching asuffix c. Then, in this formalism we find (26)

Sc=b(Ac − A)=b “A(M)/“M|M=1 (5.6)

Ac=“(MA(M))/“M|M=1 (5.7)

where Sc is the configurational entropy and Ac is called the ‘‘internal
energy.’’ (26)

We now turn to (5.4),

A(M)=−(bM)−1 ln F D
M

a=1
d{fa} e−bF({f}, M) (5.8)

The correlation matrix Ĝ in replica space is expressed through its
ab-element as

(Ĝk)ab=bOfa
kfb

−kP (5.9)

Then the two types of correlation functions are defined as

G(r − rŒ) — bOf(r)a f(rŒ)aP

F(r − rŒ) — lim
t Q .

bOf(r, t)a f(rŒ, 0)aP (5.10)

a being any replica index. The second member of the above equation is the
Edwards-Anderson (EA) type correlation function whereas the first one is
the usual equal time correlation function. Here one has assumed symmetry
in replica indices in view of the symmetry of the g-term. This permits us to
make the following Ansatz (7) (indices k are occasionally suppressed):

Ĝ=(G− F) 1+FE (5.11)
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where 1 is the unit matrix in the replica space and E is the matrix, all of
whose elements are unity. We can then write

Ĝ−1=G−1
0 1+Ŝ −

g
M

E (5.12)

where G0 is the correlation function in the absence of both the nonlinear
and g-terms. This also defines the self-energy part Ŝ. Next we make an
Ansatz similar to (5.11) as

Ŝ=(SG − SF) 1+SFE (5.13)

After some algebra we find in the limits M Q 1, g Q 0+ the following (7)

G−1=G−1
0 +SG (5.14)

We then find (7)

F=−(G− F)−1 GSF

or,

F=G− K, K−1 — G−1 − SF (5.15)

In order to proceed further we need to introduce an approximation to
deal with the free energy functional (3.18). Thus we first tried the random
phase approximation which is considered to be good for fluids with long-
range interaction potential. See ref. 21, Chapt. 6. We found that there is no
possibility of producing non-ergodic states in this aproximation since the
density fluctuations of the reference fluid are dealt with in the linear
approximation here.

5.2. Self-Consistent Screening Approximation (SCSA)

The replica analysis of a model of stripe glass was recently carried
out (7) using the self-consistent-screening approximation(SCSA) of Bray. (28)

The importance of SCSA (28) as compared to other approximation scheme
such as RPA arises from the fact that SCSA seems to be capable of dealing
with symmetry breaking in a very natural way. This together with replica
trick described in the preceding section would permit us to treat glass-like
behavior with a complicated (free) energy landscape. (7, 26) In the following
we try to map our problem to this analysis. The main difference is the
absence of the gradient term and a general form of long-range interaction
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in our case, which will only affect linear propagator G0k, which in our case
arises from the quadratic terms in f in (3.18), is

G−1
0k =u2+Uk (5.16)

We argue later that in fact there is a close connection between the two
models of self-generated glassy systems, i.e., stripe and van der Waals
glasses.

We now rewrite F({f}, M) entering (5.4) as

F({f}, M)=C
a

F dr 1u2

2
[fa(r)]2+

u4

4
[fa(r)]42

+C
a

1
2

F dr F drŒ U(r − rŒ) fa(r) fa(rŒ)

−
g

2Mb
C
a, b

F dr fa(r) fb(r)+
1
2

MVU0r2
0 (5.17)

We consider that the difference

g
2Mb

C
a > b

F dr([fa(r)]2+[fb(r)]2) −
g

2Mb
F dr C

a
[fa(r)]2

is absorbed into the first term of (5.17). First, we must extend the scalar
order parameter f into the n component vector order parameter fi with
i=1, 2,..., n. Then we initially suppose that n is large and assume u4 3 1/n.
We attempt an expansion in 1/n and assume an analytic continuation to
smaller n, even to n [ 1. (26)

The subsequent algebra is similar to that in ref. 7 and we can omit
intermediate steps. The final outcome is summarized by the following
self-consistent set of equations for Fourier components of (5.10), Gk, Fk.

G−1
k =G−1

0k +SGk (5.18)

Fk=Gk −Kk, K−1
k — G−1

k − SFk (5.19)

SGk=SH+
2
n

F
q
DGqGk − q (5.20)

SFk=
2
n

F
q
DFqFk − q (5.21)
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SH=nu4 F
q
Gq (5.22)

DGk=1 b

nu4
+PGk

2−1

(5.23)

DF k= − [1 − PFkDG k]−1 DG
2
kPFk (5.24)

PGk=F
q
GqGk − q (5.25)

PFk=F
q
FqFk − q (5.26)

The configurational entropy Sc or its density sc — Sc/V is given by
refs. 7 and 26

sc= −
1
2

F
k

3 ln 11 −
Fk

Gk

2+
Fk

Gk

4

+
1
2

F
k

3 ln 11 −
vPFk

1+vPGk

2+
vPFk

1+vPGk

4 (5.27)

with v —
nu4
b . The expressions (5.18)–(5.20) follow by minimizing the follow-

ing expression for the free energy appropriate for the SCSA approximation
with respect to Gk. (7, 29)

bA(M)
2M

=Tr ln Ĝ−1+Tr ln D̂−1 − Tr ŜĜ (5.28)

where matrix product includes integration over wave vectors. We will take
n=1 in the following.

Before concluding this subsection we briefly touch upon related
aproximate methods to handle nonlinear field equations. Some time ago
Kraichnan introduced one of the first successful methods now known as
direct interaction approximation (DIA), (30) which is, in fact, closer in spirit
to the MCT of Section 4. Generalizations of DIA and alternative more
elaborate approaches were introduced and examined in ref. 31, which
include SCSA under the name of the renormalized vertex approximation.
This incorporates screening of interactions between different fluctuating
fields. We shall come back to this approximation again in Section 7.
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5.3. Equations for Non-Ergodicity Parameters

The set of Eqs. (5.18)–(5.26) can only be analyzed via numerical
mehtods reliably.10 But we can hope to gain some insights by an approxi-

10 One promising numerical approach can be based on the fact that in (5.18)–(5.26) the
determinations of Gk and Fk are separated. Namely, for given u2 and Uk we can solve (5.18),
(5.20), (5.22), (5.23), and (5.25) to find Gk. Then, with this knowledge we can solve (5.19),
(5.21), (5.24), and (5.26) to obtain Fk. However, we can reverse the first part of this compu-
tation. We first make a reasonable guess for Gk which leads to desired results for Fk. We can
then use (5.18) and (5.16) with g=0 to deduce u2+Uk. It is only necessary that the resulting
u2+Uk is such that it has a negative minimum at some finite value of k and U(r) is such as
to prevent global instability of the system. An example of such an analysis is given in ref. 47.

mate analysis. Here we make use of the spirit of MCT that the static quan-
tities such as G are smoothly varying as we cross from ergodic to
nonergodic states.11 Thus G, PG, and DG are assumed to be given. The only

11 This will not be rigorously true for model systems with long-range forces such as that
described in ref. 8.

unknown is F which is obtained by solving the following equation:

Fk=Gk −
1

G−1
k − 2 >q DFqFk − q

(5.29)

After rearranging this and defining the wave-number dependent non-
ergodicity parameter by fk — Fk/Gk the above equation becomes, with DF,
(5.24), now expressed in terms of fk defined above,

fk

1 − fk
=2Gk F

q

D2
Gq >p GpGq − p fp fq − p

1 −DGq >p GpGq − p fp fq − p
Gk − q fk − q (5.30)

In case when fk is small, this corresponds to the MCT-like equation
(4.19) where M is now cubic in the f’s. Such equation would follow if one
applies the method of Kirkpatrick and Thirumalai. (32) In fact they obtained
equations with M quadratic in f for a cubic Hamiltonian. They obtained
the same equation dynamically by using MCT-like approach for a simple
relaxational type model we mentioned before. Then they comment that
glassy behavior should be independent of the dynamics used. However, this
is not generally true as we have shown for the case of MCT driven by
reversible MC mechanism. In fact the two corresponding equations (5.30)
and the earlier one, (4.19), are totally different though the Hamiltonian
(free-energy functional) are the same.

Perhaps it is important to point out that the difference cannot solely
be attributed to dissipative and non-dissipative nature of nonlinearities
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in the two cases. A crucial point seems to be whether the ergodic-
to-nonergodic transition is driven by a non-trivial Hamiltonian or by
purely kinetic effects or by both. See the next section for further discus-
sions. The replica approach as presented here takes into account only the
properties of Hamiltonian. On the other hand, elsewhere we have derived
purely dissipative dynamical density functional equation from a Langevin
or Fokker–Planck equation type model with reversible mode coupling. (38)

This equation contains non-trivial kinetic effects in addition to the non-
trivial Hamiltonian (free energy density functional). We note in passing
that the same dynamical density functional equation can be derived from
the Smoluchowski equation for colloidal systems without hydrodynamic
interactions. (38) In order to reproduce from this equation the long-time
form of the self-consistent MCT equation for the density correlator, (4.8)
and (4.9), we needed both nontrivial kinetic effects and nontrivial free
energy function(al)s as we have emphasized in ref. 39 and the point will be
also discussed in the next section.

Finally we note that both (4.19) and (5.30) possess multiple solutions
including fk=0 which corresponds to a supercooled liquid state. For the
case of MCT it is shown that the state with the largest fk is always
reached. (1) For (5.30) no such property is found so far.

6. MECHANISMS OF NON-ERGODICITY

In contrast to more conventional phase trasition problems, widely
different ideas about the so-called glass transitions appear to coexist.
Consequently, more than one mehacnisms of glass transitions or ergodic-
nonergodic transitions have been proposed. Here we look at some of these
proposals.

6.1. Three Types of Mechanisms

In general three distinct types of mechanisms driving ergodic-
nonergodic transitons have been proposed as enumerated below.

1. Those driven by non-trivial Hamiltonians (or free-energy func-
tion(al)s). Most spin glass type models (33) belong to this type.

2. Those driven by purely kinetic effects but with trivial Hamiltonians12

(e.g., facilitated kinetic Ising models reviewed in ref. 42)

12 Here trivial Hamiltonians are meant typically to be those without interaction such as spin
models with independent spins in an external magnetic field or an ideal gas system.

3. Those driven by combination of nontrivial Hamiltonians and
kinetic effects (e.g., the MCT for liquids (1))
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The cases (1) and (2) are well-documented and need no further comments.
We here argue that the mode coupling theories of supercooled liquids (1)

belong to the case (3). Now, in this type of theories, the body force acting
on a fluid element at r, which is nonlinear in density fluctuations and can
produce cage effects, plays the central role. In its simplest form the body
force appears in the following overdamped equation of motion for density
fluctuations obtained after adiabaticlly eliminating the velocity field: (38)

“

“t
r(r, t)=−LN · f(r, t)=LN · r(r) N

dH({r})
dr(r)

(6.1)

where L is an Onsager kinetic coefficient and H({r}) is the free energy
density fucntional. The expression for the body force density denoted as
f(r) is given by

f(r)=−r(r) N
dH({r})

dr(r)
(6.2)

Typically the free energy density fucntional takes the following form: (34)

H({r})=H0({r})+HI({r}) (6.3)

H0({r}) — T F dr r(r) ln 1r(r) r(r)
r0

2 (6.4)

ideal gas part, highly nonlinear in dr

HI({r}) —
1
2

F dr F drŒ V(r − rŒ) r(r) r(rŒ) (6.5)

interaction part, quadratic in dr

The usual choice for the interaction V(r) is − TC(r), C(r) being the direct
correlation function. (21, 34) This will lead to the MCT results of Section 4. (1)

For derivation see, e.g., ref. 20.
The linear and nonlinear contributions to the body force are:

fl(r)= − TN dr(r) − r0N F dr
¯
V(r − r

¯
) dr(r

¯
) (6.6)

linear due to the presence of an extra r factor in
front of f(r) in (6.2)

fnl(r)= − dr(r) N F dr
¯
V(r − r

¯
) dr(r

¯
) (6.7)

nonlinear due to the presence of an extra r factor in
front of f(r) in (6.2)
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The well-known cage effect (1) comes from the nonlinear body force
(6.7) which combines the interaction part of the free eenrgy functional and
the kinetic effect in the fom of an extra factor of dr(r, t).

It should be emphasized that the situation is totally different for the
conventional TDGL type models like:

“

“t
r(r, t)=LŒN2 dH({r(t)})

dr(r, t)

“

“t
r(r, t)= − Lœ

dH({r(t)})
dr(r, t)

where driving mechanisms are entirely contained in the non-trivial Hamil-
tonians, or free nergy function(al)s H({r}).

Understanding the relationship between these different types of mecha-
nisms is a problem of utmost importance.

One nagging question is that how much (free-)energetic considerations
alone can go towards full understanding of glassy behavior, in particular,
meaning of the often quoted mode coupling critical temperature. (43)

A possible first step toward addressing this question is to look at
dynamical extensions of SCSA. (45, 46) These models are of purely relaxatio-
nal type driven by non-trivial Hamiltonians. If we follow Kirkpatrick
and Thirumalai (32) and if extention of these equations or preferably their
replicated version13 to non-ergodic regions is possible, we expect to recover

13 In this connection it is useful to remember the situation in spin glasses. (33) The dynamical
treatment of spin glass was introduced first to avoid somewhat artificial nature of the old
replica treatment which requires one to take the number of replicated sytems to zero in the
end. This became the standard tool to deal with spin glass and other problems with
quenched randomness. De Domonicis (35) then noted that if the problem is formulated
dynamically using the MSR method, (36) averages over quenched randomness can be per-
formed without relying on the artificial old replica trick. Then, in discussing the influence of
an initial condition on out-of-equilibiurm dynamics, it became necessary to incorporate the
replica trick into dynamical theory again. (37)

(5.30) for the nonergodicity parameter. An attempt toward this direction
will be given in Section 7. Then we can start to consider including non-
trivial kinetics. In this endeaver it might be useful to know that SCSA can
be cast into a form of MCT approximation if besides the usual order
parameter field, say, f(r), we take f(r)2 as an independent composite
field (44) and formally treat both on equal footings. (45, 46)

6.2. Relationship Between van der Waals and Stripe Glasses

We expect that our model with appropriate choice of U(r) possesses
non-ergodic states and hence rich ‘‘energy landscape’’ as it is with the stripe
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glass. (7) We now examine the relationship between the two glass models
explicitly.

Let Fourier transform of U(r) be Uk=Uk (real quantity depending
only on k for isotropic interaction) and assume that it has a negative
minimum − Um at some value of wavenumber km. (8) If mink(u2+Uk) < 0
for some values of k around km, that is,

u2 − Um < 0 (6.8)

the system described by (3.18) is linearly unstable against small periodic
density fluctuations having Fourier components fk with k inside the region
of negative u2+Uk. In this sense,

u2=u s
2 — Um (6.9)

represents a mean field spinodal. Let us expand Uk near the minimum up to
second order as

Uk=−Um+b(k − km)2 (6.10)

where b is a positive coefficient. The ‘‘bare’’ static density-density correla-
tion function G0k in this neighborhood is then

G0k=
1

u2+Uk
=

1
b

1
t−2+(k − km)2 (6.11)

where

t−2 —
u2 − u s

2

b
for u2 \ u s

2 (6.12)

On the other hand, for u2 [ u s
2, G0k can become negative, that is, we enter

the region inside the mean field spinodal, and then we have to use the
Hartree approximation result

GHk=
1
b

1
t−2

H +(k − km)2 (6.13)

with

t−2
H —

u2 − u s
2+u4 >q GHq

b
(6.14)
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Here GHq is the self-consistently determined equal time density correlation
function and the r.h.s. of (6.14) is now expected to be positive in some
region inside the mean field spinodal of crystalline-liquid transition.We
may assume an upper cut-off for q in order to avoid any undesirable
divergence.

In this form our model is now very close to that of stripe glass. (7)

In that case existence of two characteristic length scales were essential to
obtain a glassy state. Here we also have such two length scales near the
mean field spinodal. One is the length lm — 2p

km
associated with the minimum

of Uk. Another is t=[b/(u2 − u s
2)]1/2 or tH=[b/(u2 − u s

2+u4 >q GHq)]1/2],
the latter including the Hartree correction term. Thus here proximity to the
mean field spinodal is an important factor for emergence of of glassy phase
in our system. We then should be able to map the analyses of ref. 7 to
our model to discuss glassy behavior, which in fact was indicated in
Section 5.3.

Now, Klein and coworkers’ findings (8) mentioned in Section 4.3
suggests emergence of frozen inhomogeneous density profiles in our model
system as well if quenched into states inside the mean field spinodal of
crystalline-liquid transition. Indeed, very recently Loh and his coworkers (47)

succeeded in numerically solving the SCSA equation (5.30) corresponding
to Klein’s model with a slight modification and found a finite non-ergodi-
city paramenter and hence a finite configurational entropy for a certain
temperature region in agreement with the argument of this subsection and
Klein’s simulation results. (8)

7. REAL REPLICA APPROACH TO DYNAMICS

One motivation to apply the real replica concept to dynamics is a hope
to find a new way to separate two qualitatively different types of dynamics
that characterize regions below the so-called mode coupling critical tem-
perature. One is the processes occurring in states within individual domains
of attraction of free energy landscape. Another is slower processes that
involve barrier crossings between different minima. If two replicated sytems
are interacting with each other by weak attractions, these sytems will likely
to remain in the same domain of attraction where physical quantities
averged over replicated systems will be slowly varying compared to quanti-
ties which represent fluctuations from averages. In fact some recent replica
calculations envisage formation of ‘‘molecules’’ consisting of ‘‘atoms’’
belonging to different replica members. (27, 40, 41) 14 The idea of considering

14 The last reference makes use of this concept for a field theoretical model of stripe glass.
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replicated system (also called clones) in non-equilibrium problems has
appeared in literature (e.g., refs. 48–51).

As a first step in this direction we describe below a formalism for
dynamical replica theory where nonergodicity is driven by complex Hamil-
tonian or more specifically the nontrivial free energy functional of our
model system. In Section 5.3 we saw the equation for the non-ergodicity
parameter obtained by MCT and by static real replica approach are radi-
cally different. This is the case even if equal time correlations in the two
equations are taken to be the same and the nonergodicity parameter is
assumed to be small. If we recall the widely recognized fact that the
underlying MCT is considered to be valid only in ergodic states, this seems
to require a dynamical theory that can also deal with complex free energy
landscape that characterizes non-ergodic states. Combining the real replica
idea with the SCSA successfully implemented in refs. 7, 26, 27 thus
motivated us to develop its dynamical version in order to deal with
dynamics involving nonergodic states. Generalizing this approach to
include kinetic effects is left for future.

We will mainly use a generating functional formalism for non-equilib-
rium problems. This has formal similarity to equilibrium problems, (45)

which facilitates use of replica theory.

7.1. Separation into Slow and Fast Processes

Here we start from the following Langevin equation for M replicated
systems, each replica being labelled by symbols a, b,...:

“

“t
fa(r, t)

=−L 5u2fa(r, t)+F drŒ U(r−rŒ) fa(rŒ, t)−
g
b

F(r, t)+u4fa(r, t)36+Ra
f(r, t)

(7.1)

ORa
f(r, t) Rb

f(rŒ, tŒ)P=2LTdab d(r− rŒ) d(t−tŒ) (7.2)

where

F —
1

M
C
M

a=1
fa (7.3)

The term in [ · · · ] in (7.1) comes from dF({f}; M)/dfa(r) with F({f}; M)
given by (5.17) where f stands for the entire set fa, a=1, 2,..., M. Here
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F(r, t), an average over weakly interacting replicated systems, will be slowly
varying compared with fluctuations from the average in nonergodic states.
In ref. 41 F(r, t) is taken to represent a frozen field in a nonergodic state.

We now write

fa(r, t)=F(r, t)+ja(r, t) (7.4)

with

C
M

a=1
ja(r, t)=0 (7.5)

Sustituting (7.4) and (7.5) into (7.1) we find

“

“t
F(r, t)= − L 51u2 −

g
b
2 F(r, t)+F drŒ U(r − rŒ) F(rŒ, t)6

− Lu4
1F(r, t)3+3F(r, t)

1
M

C
M

a=1
ja(r, t)2+

1
M

C
M

a=1
ja(r, t)32

+RF(r, t) (7.6)

“

“t
ja(r, t)= − L 5u2ja(r, t)+F drŒ U(r − rŒ) ja(rŒ, t)6

− Lu4
53F(r, t) 1ja(r, t)2 −

1
M

C
M

b=1
jb(r, t)22

+3F(r, t)2ja(r, t)+ja(r, t)3 −
1

M
C
M

b=1
jb(r, t)36+Ra

j(r, t)
(7.7)

where thermal noises are defined by

Ra
f(r, t)=RF(r, t)+Ra

j(r, t), RF(r, t) —
1

M
C
M

a=1
Ra

f(r, t) (7.8)

Therefore the fluctuation-dissipation relation (7.2) expressed in the new
variables takes the following forms:

ORF(r, t) RF(rŒ, tŒ)P=
2LT
M

d(r − rŒ) d(t − tŒ) (7.9)

ORa
j(r, t) Rb

j(rŒ, tŒ)P=2LT 1dab −
1

M
2 d(r − rŒ) d(t − tŒ) (7.10)

ORa
j(r, t) RF(rŒ, tŒ)P=0 (7.11)
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Let us now write the MSR action integral (36) as15

15 Here and after [f] etc. denote functional dependence on f(r, t), etc. and {f} etc. denote
functional dependence on f(r) etc. without t.

S([f], [f̂]; M)

— C
a

F dr dt if̂a(r, t) 5ḟa(r, t)+L
dF({f(t)}; M)

dfa(r, t)
+LTif̂a(r, t)6

=C
a

F dr dt if̂a(r, t) 5ḟa(r, t)+L 1u2fa(r, t)+F drŒ U(r − rŒ) fa(rŒ, t)

+u4fa(r, t)3 −
g
b

F(r, t)2+LTif̂a(r, t)6 (7.12)

where f̂a is a field conjugate to fa. In the operator representation, f̂a(r)
behaves like − d/dfa(r). (36) Substituting (7.4) and (7.5) the action integral
becomes, denoting partial time derivative by an overdot,

S([f], [f̂]; M)

=C
a

F dr dt if̂a(r, t) 3Ḟ(r, t)+L 51u2 −
g
b
2 F(r, t)+F drŒ U(r−rŒ) F(rŒ, t)

+u4
1F(r, t)3+3F(r, t)

1
M

C
M

a=1
ja(r, t)2+

1
M

C
M

a=1
ja(r, t)326

+j̇a(r, t)+L 5u2ja(r, t)+F drŒ U(r−rŒ) ja(rŒ, t)

+u4
13F(r, t) 1ja(r, t)2 −

1
M

C
M

b=1
jb(r, t)2 2

+3F(r, t)2 ja(r, t)+ja(r, t)3 −
1

M
C
M

b=1
jb(r, t)326+LTif̂a(r, t)4 (7.13)

Since a hat variable plays the role of a functional differentiation, we find

F̂=C
a

f̂a

f̂a=ĵa+
1

M
F̂ −

1
M

C
b

ĵb

(7.14)
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These are not enough to determine the ĵ’s uniquely. Hence we can require

C
a

ĵa=0 (7.15)

and put

f̂a=ĵa+
1

M
F̂ (7.16)

We then find, for instance,

C
a

if̂aif̂a=
1

M
iF̂iF̂+C

a
iĵaiĵa (7.17)

With these the action becomes

S([f], [f̂]; M)=SF̂F([f], [f̂]; M)+Sĵj([f], [f̂]; M) (7.18)

where

SF̂F([f], [f̂]; M)

— F dr dt 3 iF̂(r, t) Ḟ(r, t)+
LT
M

iF̂(r, t) F̂(r, t)

+iF̂(r, t) L 51u2 −
g
b
2 F(r, t)+F drŒ U(r − rŒ) F(rŒ, t)

+u4
1F(r, t)3+3F(r, t)

1
M

C
a

ja(r, t)2+
1

M
C
a

ja(r, t)3264 (7.19)

and

Sĵj([f], [f̂]; M) — C
a

F dr dt iĵa(r, t){j̇a(r, t)+L[u2ja(r, t)

+F drŒ U(r − rŒ) ja(rŒ, t)+3u4F(r, t)2 ja(r, t)

+u4(3F(r, t) ja(r, t)2+ja(r, t)3)]+LTiĵa(r, t)}
(7.20)

7.1.1. Elimination

Next we eliminate the variables j and ĵ to focus on dynamics of F.
This can best be done by integrating exp S([f], [f̂]; M) out as > d[ĵ]
d[j] d[;M

a=1 ja] d[;M
a=1 ĵa] · · · . We can do this by retaining up to bili-

near terms in j, ĵ. This is based on our expectation that the system will
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tend to a non-ergodic state characterzied by F(r, t) and the amplitude of j

will remain small. In this approximation MSR action including terms
associated with the external fields ha, ĥa and Lagrangian multiplier terms
resulting from Fourier representations of d[;M

a=1 ja] d[;M
a=1 ĵa] becomes

S([f], [f̂]; M)+C
a

F dr dt[ha(r, t) fa(r, t)+ĥa(r, t) f̂a(r, t)

+i(l(r, t) ja(r, t)+l̂(r, t) ĵa(r, t))]

5 S̃0([F], [F̂]; [H][Ĥ], M)+S̃2([j], [ĵ]; [h
¯
][ĥ

¯
][l][l̂], M)

(7.21)

where

C
a

(hafa+ĥaf̂a)=HF+ĤF̂+C
a

(h
¯

aja+ĥ
¯

aĵa)

H — C
a

h(r, t)a, Ĥ —
1

M
C
a

ĥa

h
¯

a — ha −
1

M
C
b

hb, ĥ
¯

a — ĥa −
1

M
C
b

ĥb

(7.22)

We give expressions for S̃0 and S̃2, the zeroth order and the sum of the first
and second order terms in j, ĵ, respectively, as

S̃0([F], [F̂]; [H][Ĥ], M)

— F dr dt 3 iF̂(r, t) Ḟ(r, t)+
LT
M

iF̂(r, t) iF̂(r, t)

+iF̂(r, t) L 51u2 −
g
b
2 F(r, t)+F drŒ U(r − rŒ) F(rŒ, t)+u4F(r, t)364

+F dr dt(H(r, t) F(r, t)+Ĥ(r, t) F̂(r, t)) (7.23)

S̃2([j], [ĵ]; [F][F̂][h
¯
][ĥ

¯
][l][l̂], M)

— C
a

F dr dt 3 − LTĵa(r, t)2+ĵa(r, t) iL̂a(r, t)

+
3Lu4

M
iF̂(r, t) F(r, t) ja(r, t)2+(il(r, t)+h

¯
a(r, t)) ja(r, t)4 (7.24)
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where

L̂a(r, t) — Dtj
a(r, t)+l̂(r, t) − ih

¯
ˆ a(r, t) (7.25)

Dt(r) — “t+L(u2+Û(r)+3u4F(r, t)2) (7.26)

Û(r) A(r) — F drŒ U(r − rŒ) A(rŒ) (7.27)

Dt, Û being both operators and A an arbitrary function of space. We
observe in passing that Dt can be regarded as a symmetric matrix in the
space of r and replica indices, which can be also written as

Dt=1“t+LH({F}) (7.28)

with 1 an identity matrix and H({F}) the Hessian matrix of (5.17) with
M Q . and j=0.

We then integrate fuctionally over ĵ and find for S̃j defined by

eS̃j — F d[ĵ] eS̃2 (7.29)

the following:

S̃j=C
a

F dr dt 3 −
1

4LT
L̂a(r, t)2+

3Lu4

M
iF̂(r, t) F(r, t) ja(r, t)2

+(il(r, t)+h
¯

a(r, t)) ja(r, t)4 (7.30)

The effective action integral for F, F̂ is given by

S̃eff([F][F̂]; [h
¯
][ĥ

¯
], M) — S̃0([F][F̂]; [H][Ĥ], M)

+DS̃eff([F][F̂]; [H][Ĥ], M) (7.31)

eDS̃eff — F d[l] d[l̂] eDS̃ll̂ (7.32)

eDS̃ll̂ — F d[j] eS̃j (7.33)

In order to carry out integration with respect to [j] we rewrite (7.30) as
follows:

S̃j=C
a

F dr dt{ − 1
2 ja ·Q · ja −Pa · ja −Ta} (7.34)
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where Q and P are operators defined by (7.35) and (7.36), respectively,
below and T is a quantity defined by (7.37) below. Center dots imply
scalar products when Q, P, and T are viewed as matrices which naturally
involve space-time integrations. Here

Q —
1

2LT
D†

t Dt −
6Lu4

M
iF̂F (7.35)

Pa —
1

2LT
(−ih

¯
ˆ a+l̂) Dt − h

¯
a − il (7.36)

Ta —
1

4LT
(−ih

¯
ˆ a+l̂)2 (7.37)

Also X† of any operator X denotes an adjoint of X, but no complex
conjugation. Therefore D†

t =−“t+L(u2+Û+3u4F(r, t)2) since Û is self-
adjoint. So is Q self-adjoint as well. With these notations we have, after
carrying out integration with respect to [j] with its convergence assumed16

16 If this Gaussian integral and the one below are not convergent, the density profile F does
not correspond to local free energy minma, and possibly contain saddle points and/or local
maxima.

DS̃ll̂=C
a

F dr dt 31
2
Pa ·Q−1 ·Pa† −Ta4−

M
2

ln det Q (7.38)

where the last term is needed since Q depends on F, F̂.
We are now left with performing > d[l] d[l̂]. To do this we write out

(7.38) noting ;a h
¯

a=;a h
¯
ˆ a=0. That is,

DS̃ll̂=M F dr dt 3 −
1

4LT
l̂(r, t)2+

1
2

l̂ ·L · l̂+
1
2

l̂ ·M · l

+
1
2

l ·M† · l̂+
1
2

l ·Q−1 · l4

+C
a

F dr dt 3 1
4LT

h
¯
ˆ a(r, t)2 −

1
2

h
¯
ˆ a ·L · h

¯
ˆ a −

1
2

h
¯
ˆ a ·M · h

¯
a −

1
2

h
¯

a ·M† · h
¯
ˆ a

−
1
2

h
¯

a ·Q−1 · h
¯

a4−
M
2

ln det Q (7.39)

where

L —
1

(2LT)2 Dt ·Q−1 · D†
t , M — −

1
2LT

Dt ·Q−1 (7.40)

1284 Kawasaki



The integration > d[l] d[l̂] involves only the first two lines of (7.39) which
are written in the matrix form as

−
1
2

M(l l̂) · X ·R
l

l̂
S (7.41)

with

X — 1 −Q−1 M†

M 1
2LT 1 −L

2 (7.42)

Here F̂ enter only through Q and F through Q and Dt. Performing Gaus-
sian integrations whose convergence is assumed again, we finally find

DS̃eff([F][F̂]; [h
¯
][ĥ

¯
], M)

=−
M
2

ln det Q−
1
2

ln det X+C
a

F dr dt 3 1
4LT

h
¯
ˆ a(r, t)2 −

1
2

h
¯
ˆ a ·L · h

¯
ˆ a

−
1
2

h
¯
ˆ a ·M · h

¯
a −

1
2

h
¯

a ·M† · h
¯
ˆ a −

1
2

h
¯

a ·Q−1 · h
¯

a4 (7.43)

Substitution of the above result into the second term of (7.31) completes
the elimination of j, ĵ. Now, in this last form the causality is not evident.
This apparent violation of causality comes from elimination of j, ĵ over
the entire time domain (−., .).

7.1.2. Special Case M Q .

We consider the following limiting processes taken in the order indi-
cated:

(1) the thermodynamic limit, (2) M Q ., and (3) g Q 0.
Here the degrees of freedom associated with F representing averages

over M replicas will literally freeze into the non-ergodic phase. Then the
degrees of freedom associated with j represent rapid motion in the back-
ground of the frozen spatial heterogeneity.

Note M enters the final result only through Q. The limiting form for Q
denoted as Q. is

Q.=
1

2LT
D†

t Dt (7.44)
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which is independent of F̂. In view of the factor M in front of the first term
on r.h.s. of (7.43), we need to expand this term in 1/M and retain the first
two terms. Thus putting

Q=Q.+
1

M
Q1

Q1 — − 6Lu4iF̂F

(7.45)

we find

ln det Q=ln det Q.+ln det 11+
1

M
Q−1

. ·Q1
2

=ln det Q.+
1

M
Tr Q−1

. ·Q1+O(1/M2) (7.46)

Here Tr actually implies > dr dt. Therefore, in this limit, we get for the first
term on the r.h.s. of the action (7.43),

−
M
2

ln det Q=−
M
2

ln det Q. −
1
2

Tr Q−1
. ·Q1+O(1/M) (7.47)

Then the limit M Q . suggests minimizing ln det Q. with respect to F,
whose meaning is unclear at the moment.

Further results in this limit are, with suffices . attached,

L.=
1

2LT
(7.48)

M.=(D†
t )−1, M†

.=D−1
t (7.49)

X.=R − 2LTD−1
t (D†

t )−1 D−1
t

(D†
t )−1 0

S (7.50)

7.2. SCSA Applied to Dynamics

Here we develop a formulation which uses an auxilliary field s which,
in a sense behaves as f2, to deal with the nonlinearity in (7.1)17

17 A possible extenstion of this is to generalize s(r)=f(r)2 into f(r1) f(r2) with |r1 − r2 | of the
order of l or smaller. Then, writing r1=R+1

2 r and r2=R − 1
2 r and expanding the product

in r, we obtain the expression of the form

f(r1) f(r2)=C
lm

slm(R, |r|) Qlm(r̂)

where Qlm(r̂) with r̂ — r/|r| is the bond orientation parameter. (52) Here the slm’s play the role
of new copmposite fields.
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MCA applied to this case is known to reproduce SCSA results. (45, 46)

The starting Langevin equations of motion for M set of replicated
variables fa and sa with , a=1, 2,..., M are

“

“t
fa(r, t)= − L

dF̂({f(t)}, {s(t)}; M)
dfa(r, t)

+Ra
f(r, t) (7.51)

“

“t
sa(r, t)= − Ls

dF̂({f(t)}, {s(t)}; M)
dsa(r, t)

+Ra
s(r, t) (7.52)

with the following averages over noises:

ORa
f(r, t)P=ORa

s(r, t)P=ORa
f(r, t) Rb

s(rŒ, tŒ)P=0

ORa
f(r, t) Rb

f(rŒ, tŒ)P=2LTdab d(r − rŒ) d(t − tŒ)

ORa
s(r, t) Rb

s(rŒ, tŒ)P=2LsTdab d(r − rŒ) d(t − tŒ) (7.53)

The free energy functional of the replicated system is similar to that of
Section 5 except that now auxilliary fields s are included. (46) That is,

F̂({f}, {s}; M)=F2({f}; M)+C
a

F dr 1 1
4 sa(r)2+1

2 i `u4 sa(r) fa(r)22

(7.54)

where

F2({f}; M) — C
a

F dr
u2

2
[fa(r)]2+C

a

1
2

F dr F drŒ U(r − rŒ) fa(r) fa(rŒ)

−
g

2Mb
C
a, b

F dr fa(r) fb(r) (7.55)

Here g( > 0) is the weak field that pulls together a pair of replicated
systems together so that they will evolve eventually in the same free energy
minimum in nonergodic states. This plays a role similar to the symmetry-
breaking field in an ordinary phase transition. We further remark a pos-
siblity to make g( > 0) time-dependent to encompass larger classes of
problems that can be dealt with by this formalism. For instance one can
switch g(t) on and off so that two replicated systems try to evolve into the
same non-ergodic component for certain time periods.

In the above we have assumed that the inter-replica interactions arise
solely from the free energy functional. However, one can think of interac-
tions of other origins although we do not explore such possibilities at
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this time. In ref. 51 which deals with quantum glasses g enters the quantum
action integral in quite a different manner18

18 It enters in the following form in the action integral appearing in quantum-mechanical
calculation:

− g C
ab

F dr dt dtŒ fa(r, t) fb(r, tŒ) (7.56)

The MSR action is

Ŝ([f], [f̂], [s], [ŝ]; M)=S2([f], [f̂]; M)+DŜ([f], [f̂], [s], [ŝ]; M)
(7.57)

with

S2([f], [f̂]; M) — C
a

F dr dt if̂a(r, t) 5ḟa(r, t)

+L
dF2({f(t)}; M)

dfa(r, t)
+LTif̂a(r, t)6

=C
a

F dr dt if̂a(r, t) 5ḟa(r, t)+L 1u2fa(r, t)

+F dr U(r − rŒ) fa(rŒ, t) −
g
b

F(r, t)2

+LTif̂a(r, t)6 (7.58)

DŜ([f], [f̂], [s], [ŝ]; M) — C
a

DŜ([fa], [f̂a], [sa], [ŝa]) (7.59)

DŜ([fa], [f̂a], [sa], [ŝa]) — F dr dt{f̂a(r, t) Li `u4 sa(r, t) fa(r, t)

+iŝa(r, t) Ls[1
2 (sa(r, t)+i `u4 fa(r, t)2)

+iTŝa(r, t)]} (7.60)

Here we have chosen Ls large enough that the l.h.s. of (7.52) can be
dropped. (53)

7.3. Schwinger–Dyson Equation

Derivation here follows the standard method described, for instance,
in ref. 54, and is not limited to the zero (or constant) values of the field
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variables. Thus it is applicable to the out-of-equilibrium problems as well.
Note OsP ] 0 even in equilibrium.

We first make use of the following identity:

e−WM([hf], [ĥf], [hs], [ĥs]) F d[f] d[f̂] d[s] d[ŝ]
d

dxa(r, t)

× eŜ([f], [f̂], [s], [ŝ]; M)e i > drŒ dtŒ(hf · f+ĥf · f̂+hs · s+ĥs · ŝ)

× e−bF̂({f(0)}, {s(0)}; M)=0 (7.61)

where

eWM([hf], [ĥf], [hs], [ĥs]) — F d[f] d[f̂] d[s] d[ŝ] eŜ([f], [f̂], [s], [ŝ]; M)

× e i > dr dt(hf · f+ĥf · f̂+hs · s+ĥs · ŝ)e−bF̂({f(0)}, {s(0)}; M) (7.62)

(7.61) and (7.62) incorporate the initial equilibrium condition at the time
zero. For t > 0 this can be written as

7 dŜ

dxa(r, t)
+ha(r, t)8=0 (7.63)

Or,

7 dŜ

dxa(r, t)
8=−ha(r, t) (7.64)

Using (7.57)–(7.60) we can find explicit forms of (7.64) as follows:

−Oḟ̂a(r, t)P+u2Of̂a(r, t)P+F drŒ U(r−rŒ)Of̂a(rŒ, t)P

−
g

2bM
OF̂(r, t)P+iL `u4 Osa(r, t)P

−Ls `u4 [Raa
fs(r, t; r, t)+Oŝa(r, t) > fa(rŒ, tŒ)P]

=−ha
f(r, t) (7.65)

Oḟa(r, t)P+L 5u2Ofa(r, t)P+F drŒ U(r−rŒ)Ofa(rŒ, t)P−
g

2b
OF(r, t)P6

−L `u4 [Caa
sf(r, t; r, t)+Osa(r, t)POfa(r, t)P]=−ĥa

f(r, t) (7.66)
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−L `u4 [̂Raa
ff(r, t; r, t)+Ofa(r, t)POf̂a(r, t)P]+

Ls

2
iOŝa(r, t)P=−ha

s(r, t)
(7.67)

iLs
51

2
Osa(r, t)P+

i
2

`u4 (Caa
ff(r, t; r, t)+Ofa(r, t)P2)+2iTOŝa(r, t)P6=−ĥa

s(r, t)
(7.68)

where we have introduced the response functions R and the correlation
functions C by

Rab
fs(r, t; rŒ, tŒ) — Ofa(r, t) ŝb(rŒ, tŒ)P−Ofa(r, t)POŝb(rŒ, tŒ)P (7.69)

Cab
sf(r, t; rŒ, tŒ) — Osa(r, t) fa(r, t)P−Osa(r, t)POfa(rŒ, tŒ)P (7.70)

In order to proceed to derivation of the SD equation, we use a
compact notation: let xa(r, t) denote all the variables of the replicated
systems, fa(r, t), f̂a(r, t), sa(r, t), ŝa(r, t), a=1, 2,..., M. We then write
x — {xa} and the fields conjugate to x are denoted as h — {ha}. We first
introduce the Legendre transform from W([h]) to C([x]) by

C([x])=W([h]) − h · x (7.71)

where we suppressed space-time integration of the second term, and h, x
are related by

xa(r, t)=
dW([h])
dha(r, t)

, ha(r, t)=−
dC([x])
dxa(r, t)

(7.72)

The last member above is nothing but the general form of the averaged
equations of motion obtained in (7.65)–(7.68) where average signs in
Ofa(r, t)P etc. are suppressed.

In the following the inverse propagator and the vertex function play
major roles which are formally defined, respectively, as (space-time coor-
dinates are suppressed for simplicity),

Cab —
dha

dxb

=−
d2C

dxa dxb

, Cabc — −
d3C

dxa dxb dxc

(7.73)

Here the propagator Gab (that is, response and correlation functions) is
defined by

Gab —
d2W([h])

dha dhb

(7.74)
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We naturally have Cab=(G−1)ab or

GacCcb=dab (7.75)

where summation convention over repeated indices is implied. Taking
the functional derivative of the above with respect to xd and noting
dCcd/dxb=Cdcb we find

dGac

dxd

=−GabCbEdGEc (7.76)

Here, to be more concrete, we introduce a cubic generating functional
where again space-time integrals are suppressed:

Ŝ([x])=caxa+
1
2

cabxaxb+
1
3!

cabcxaxbxc (7.77)

were xa etc. are not averaged values. This gives

dŜ([x])
dxa

=ca+cabxb+
1
2

cabcxbxc (7.78)

We then take an average of the above to get (where average signs are again
omitted), noting (7.64) and − ha=dC/dxa

ca+cabxb+
1
2

cabc[Gbc+xbxc]=
dC

dxa

(7.79)

This is the explicit form of the averaged equation of motion. Now, the SD
equation is obtained by taking functional derivative of the above with
repect to xb as

cab+
1
2

cadc

dGdc

dxb

+cabcxc=−(G−1)ab (7.80)

This becomes using (7.76) as

cab − 1
2 cadcGdECEabGac+cabcxc=−(G−1)ab (7.81)

This is again transformed into a more familiar Schwinger–Dyson form:

(G−1)ab=(G−1
0 )ab+Sab (7.82)
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Now, there are two ways to define the two terms appearing on the r.h.s. of
the above equation:

(G−1
0 )ab — − cab − cabcxc

Sab — 1
2 cadcGdEGmcCEmb (7.83)

(G−1
0 )ab — − cab

Sab — − cabcxc+
1
2 cadcGdEGmcCEmb (7.84)

The former is the way adopted by field theorists, (54) whereas the latter is the
way chosen by condensed matter physicists. (7)

In the following we adopt the second choice. Note that − cabcxc

appearing in the above gives rise to the Hartree term corresponding to
(5.22) of static calculation.

If we note from (7.73), (7.84), and (7.82) that

Cabc=
dSab

dxc

(7.85)

we get a functionally closed set of equations (7.82), (7.84), and (7.85).
Now, (7.84) and (7.85) give

Cabc=−cabc+
d DSab

dxc

(7.86)

with

DSab — 1
2 cadcGdEGmcCEmb (7.87)

A popular approximation scheme known under different names (DIA,
MCA, BVA, etc.)19 neglects the second term of (7.86). That is,

19 These abbreviate Direct Interaction Approximation, (30) Mode Coupling Approximation, (45)

Bare Vertex Approximation, (54) respectively. Note that these namings originally refer to the
cases when x do not contain the s’s and the ŝ’s.

Cabc % − cabc (7.88)

The error to this approximation is estimated as O(n−1), n being the number
of components of the order parameter. (54) In this approximation we find
the following self-consistent closed equation determining G.

(G−1)ab=−cab − cabcxc+
1
2 cadcGdEGmccEmb=(G−1

0 )ab+Sab (7.89)
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Or

Gab=G0ab −G0acScdGdb (7.90)

In our case this turns out to be the SCSA approximation. We give some
technical details in applying the general results of this section to our
problem in Appendix A.

8. MICROSCOPIC DERIVATION

In this section we attempt a microscopic derivation of our model
system. In equilibrium problems there are many studies of the effects of
long range forces on reference systems with short range interactions. (25, 55, 56)

Our starting point is the following Liouville equation for the phase space
distribution function D̂(x̂, t) where x̂ is the abbreviation for the entire set
of the phase space variables. For particle systems these are the particle
position vectors ri and momenta pi with i=1, 2,..., N, with N the total
number of particles, which are also denoted as 3N-component vectors rN

and pN:

“

“t
D̂(x̂, t)=L̂(x̂) D̂(x̂, t) (8.1)

where the Liouville operator is given by

L̂(x̂)=L̂0(x̂)+L̂U(x̂) (8.2)

L̂U(x̂) —
“

“pN · NNÛN(x̂) (8.3)

and L0(x̂) is the Liouville operator for the reference system which need not
be explicitly specified. Here ÛN(x̂) is the total potential energy coming
from long-range interaction and is given by

ÛN(x̂) — C
j > l

U(rj − rl) (8.4)

Our task is then to reduce this Liouville equation into those containing
relevant hydrodynamic variables. Thus we introduce the reduced distribu-
tion function. Let us suppose that on a certain coarse-grained level time
evolution of the system can be well described by a set of gross variables.
The most familiar examples of the gross variables are the variables that
enter the usual hydrodynamic equations which are dictated basically by
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conservation laws. (6) But, in reality the choice of the gross variables is far
from clear-cut, especially for glassy sytems. We denote a set of these
variables by {a}. This can be a discrete set, or a continuous set of variables
like field variables. In many cases we can find expressions for them in terms
of the phase space variables, which we denote by {â(x̂)}. We can then
express the (micro-canonical) reduced distribution function (or functional)
for {a} by

D({a}, t) — F dx̂ d{a − â(x̂)} D̂(x̂, t) (8.5)

where d{a − aŒ} expresses a product of delta functions for each of the set
{a} or what may be called a ‘‘delta functional.’’ This has the following
property for any functional f({a}):

F d{aŒ} f({aŒ}) d{a − aŒ}=f({a}) (8.6)

where the integral is the functional integral over the set {aŒ}.
The problem is to obtain an equation for D({a}, t). We may then

write

“

“t
D({a}, t)=L refD({a}, t)+F dx̂[L̂N†

U (x̂) d{a − â(x̂)}] D̂(x̂, t) (8.7)

where L ref is a Fokker–Planck type operator that takes care of time evolu-
tion of the reference fluid which is assumed to be known, and L̂N†

U is the
adjoint of L̂N

U .
Now the momentum variables pN are contained in the microscopic

expression for the momentum density variable ĵ(r) and in that for the
energy density variable ê(r). These (hatted) variables are expressed as

ĵ(r; x̂) — C
j

pj d(r − rj) (8.8)

ê(r; x̂) — C
j

p2
j

2m
d(r − rj)+ · · · (8.9)

where · · · represent terms coming from potential energies which do not
contain momenta and will not be needed for the moment. The molecular
kinetic energy exhibited in the second equation above goes partly to the
thermal energy and partly to the kinetic energy of macroscopic motion of
fluid elements.
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We are particularly interested in the following expression:

[L̂N†
U (x̂) d{a − â(x̂)}]=F dr

d

da(r)
(NNÛN) ·

“â(r; x̂)
“pN d{a − â(x̂)} (8.10)

where we assumed the gross variables to be a set of field variables {a(r)}
whose molecular expressions are {â(r; x̂)}. We now work out (NNÛN) ·
(“â(r; x̂))/“pN} for the momentum and energy densities:

(NNÛN) ·
“ĵ(r; x̂)

“pN =C
jl

d(r − rj)
“U(rj − rl)

“rj

=F drŒ [NU(r − rŒ)] r̂(r; x̂) r̂(rŒ; x̂) (8.11)

(NNÛN) ·
“ê(r; x̂)

“pN =F drŒ
ĵ(r; x̂)

m
· [NU(r − rŒ)] r̂(rŒ; x̂) (8.12)

We see that the r.h.s. are expressed solely in terms of hatted gross
varaibles. In view of the delta functionals multiplied to the right in (8.7)
and (8.10) these hats can be removed. Then we see that these extra terms
arising from long-range force can appear as the following additional terms
to the equation of motion for the momentum and energy densites:

“

“t
j(r, t)= · · · − r(r, t) F drŒ NU(r − rŒ) r(rŒ, t) (8.13)

“

“t
e(r, t)= · · · −

j(r, t)
m

· F drŒ NU(r − rŒ) r(rŒ, t) (8.14)

where ellipsis stand for the terms in the absenc of long range forces. (8.13)
give just the additional term of the model equation (2.4).

Since our model equations, in particular, (2.5), were expressed in terms
of specific entropy s instead of the energy density, we need to convert the
variables in (8.14) using the thermodynamic relation as

rT ds=−
1
r

h dr+deI (8.15)

where eI is the local internal energy density and h — eI+p is the local
enthalpy density with p the local pressure. Thus e is written as (arguments r
and t are often suppressed),

e=eK+eI with eK —
j2

2mr
, (macroscopic kinetic energy) (8.16)
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Now, we need to consider contributions of long range forces to this
local enthalpy density. So we go back to (3.5) and (3.6). These equations
give for the contribution to the total enthalpy H=E+PV the value
Vr2

0U0. We can infer from this result that this is translated into the addi-
tional local enthalpy density h(r) as follows

r(r) F drŒ U(r − rŒ) r(rŒ)

Then we can find the equation for s as

r(r, t) T(r, t)
“

“t
s(r, t)= −

1
r(r, t)

h(r, t)
“

“t
r(r, t)+

“

“t
eI(r, t)

=
1

r(r, t)
h(r, t) N ·

j(r, t)
m

+
“

“t
eI(r, t)

= · · · +1N ·
j(r, t)

m
2 F drŒ U(r − rŒ) r(rŒ, t)+

“

“t
eI(r, t)

(8.17)

where ellipsis is for the reference fluid contributions.
We still need to compute the last term “

“t eI(r, t). For this purpose let us
consider a change dUeI(r, t) in eI(r, t) coming from the long-range force
when the density at r is changed by dr(r, t):

dUeI(r, t)=dr(r, t) F drŒ U(r − rŒ) r(rŒ, t) (8.18)

where we noted that > drŒ U(r − rŒ) r(rŒ, t) behaves like an external field
acting at a molecule located at r at time t. This immediately gives

“

“t
eI(r, t)= · · · +1 “

“t
r(r, t)2 F drŒ U(r − rŒ) r(rŒ, t)

= · · · −
N · j(r, t)

m
F drŒ U(r − rŒ) r(rŒ, t) (8.19)

If we substitute this into (8.17) we find that the long-range force contribu-
tions cancel and we finally obtain

r(r, t) T(r, t)
“

“t
s(r, t)= · · · +(no long-range force term) (8.20)

This result confirms our model equation for the entropy, (2.5).
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9. CONCLUDING REMARKS

We have introduced a model which embodies the spirit of van der
Waals, but permits us to deal with non-equilibrium situations as well. The
difficult many body problems of dense liquids are replaced by the problems
of nonlinear fields. The capacity to handle the nonequilibrium aspects is
crucial for a thorough understanding of problems as complex as glassy
behavior. This model was used to derive the MCT equation in a manner
that shows a way to examine the uncontrolled approximations entering it.

An attempt to tackle glassy behavior in the continuum framework has
recently been put forward for stripe glasses (7) as was touched upon in
Sections 5 and 6. Despite apparent differences between the stripe glasses
and the van der Waals glasses, a striking similarity was found as far as
emergence of glassiness is concerned. In fact we argued that glassiness
results from existence of two competing length scales. For our model
system, a ‘‘short’’ length scale is the range l of long-range interactions and
a ‘‘long’’ length scale appears near the mean field spinodal of the model
system between liquid and crystalline phases (not liquid-gas). For the stripe
glass considered in ref. 7 glassyness is assoicated with occurrence of
correlated stripe structure, where correlation length exceeds the stripe
spacing20 It is interesting that even for fluid with apparent short range

20 Lou–Colonno–Romero, Yuval Clejan, Harvey Gould, and William Klein found a stripe
phase for Ising models with repulsive long range interactions. (58) Lattice effects on stripe
glassses are discussed in ref. 59 as well.

One can argue that the glassy behavior tends to disappear as the force range l increases
(J. Jäckle, private communication, and also ref. 47). Since the effects of our interest occur
over length scales of the order of l and longer in our model, one needs to scale up the
system size by a factor proportional to ld to prevent glassy behavior from disappearing as l
increases.

interactions such as the Lennard-Jones mixture the emergence of glassiness
is closely related to appearence of ramified long-lived frustrated clusters of
the sort found in spinodal nucleation. (57) There also the intrinsic length
scale of the ramified strucutre and the average cluster size will naturally be
identified as the two length scales.

On the other hand, haziness of these criteria for emergence of glassi-
ness seems to be due to lack of explicit kinetic considerations in these
arguments because glassiness can also appear by purely kinetic reasons
even for systems with trivial free energy. (4, 5, 42)

The real replica approach is very appealing in the sense that it stems
from the idea of symmetry-breaking field familiar in usual phase transi-
tions. As a first step toward better understanding of glassy dynamics we
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have presented our attempt to formulate real replica treatment of nonequi-
librium problems. So far our results are mainly formal. Real values of this
approach in deciphering mysteries of glassiness are yet to be seen. The
analogous development of real replica dynamics for our van der Waals
fluid model introduced in Section 2 has to be left for future. These
problems with more concrete results will require years of major endeavor.

In this work as well as in refs. 7 and 47 the SCSA approximation of
Bray (28) was extensively applied because it appears to be the only existing
approxiamtion that permits field-theoretical treatment of complex free
energy landscape although the approximation is uncontrolled. Examination
of this approximation in the context of our van der Waals model is an
important future research subject.

After this manuscript was submitted for publication, J. Jäckle informd
the author about a related work, (60) where a model with a Kac-type poten-
tial was used to study glassy behavior. Two comments are appropriate for
this work.

1. The replica method employed in this work is of the old Edwards
type where the number of replicas is taken to be zero at the end.

2. Uk, a Fourier transform of the Kac pothetial, was chosen to be
always positive. Hence no glassy behavior was found. This is consistent
with the conclusion of our work.

APPENDIX A: SOME TECHNICAL DETAILS OF SCSA APPLIED TO

REPLICATED DYNAMICS

Here we apply the general SCSA approximation scheme described in
the last half of Section 7 to the model system of Section 7.2. This serves to
illustrate what would be involved in implementing the general scheme of
Section 7 to concrete problems. At this stage we can only treat the time-
dependent Ginzburg–Landau type model of Section 7.2.

The first task is to consider a possible form of Gab. We can then in
general write as follows,

Gab=Gab
lm, a, b=1, 2,..., M; l, m=f, f̂, s, ŝ (A.1)

Following the symmetry argument of ref. 7, we only need the following two
types:

Gd
lm(r, t; rŒ, tŒ) — Gaa

lm(r, t; rŒ, tŒ)

Gf
lm(r, t; rŒ, tŒ) — Gab

lm(r, t; rŒ, tŒ) with a ] b
(A.2)
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The corresponding response and correlation functions R, C can have
superfixes a=b or a ] b. Then we can write when ĥ=0,

Gd
lm(r, t; rŒ, tŒ)

=R Cd
ff(r, t; rŒ, tŒ) Cd

fs(r, t; rŒ, tŒ) Rd
ff(r, t; rŒ, tŒ) Rd

fs(r, t; rŒ, tŒ)
Cd

sf(r, t; rŒ, tŒ) Cd
ss(r, t; rŒ, tŒ) Rd

sf(r, t; rŒ, tŒ) Rd
ss(r, t; rŒ, tŒ)

{R}d
ff(rŒ, tŒ; r, t) Rd

fs(rŒ, tŒ; r, t) 0 0
{R}d

sf(rŒ, tŒ; r, t) Rd
ss(rŒ, tŒ; r, t) 0 0

S
(A.3)

The zeros are due to the causality which prohibits correlations of two
hatted variable. (36) There are similar expressions for Gf

lm(r, t; rŒ, tŒ).
Next we turn to the matrix c:

(c)ab — cab=−(G−1
0 )ab (A.4)

There are two types:

cd
lm — caa

lm, and cf
lm — cab

lm, with a ] b (A.5)

Since this part is linear, it is simpler to Fourier transform with wave vector k.
Then we can write

(cd
lm)ttŒ (k)=R 0 0 − iD0

t (k) 0
0 0 0 i

2 Ls

− iD0
tŒ(k) 0 − LT 0

0 i
2 Ls 0 − LsT

S (A.6)

(cf
lm)ttŒ(k)=R 0 0 − iL g

Mb 0
0 0 0 0

− iL g
Mb 0 0 0

0 0 0 0

S (A.7)

where

D0
t (k) — “t+L 1u2+Uk −

g
Mb

2 (A.8)
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Next we consider bare vertices cabc which are symmentric with respect
to their indices. The only nonvanishing type is of the form:

cabc=caaa
lmn=clmn d(r − rŒ) d(t − tŒ), l, m, n=f, f̂, s, ŝ (A.9)

Here we list only the nonvanishing coefficients clmn :

cf̂sf=Li `u4 , cŝff=−Ls `u4 (A.10)

and those formed by interchanging indices.
We next find explicit forms for elements of G0=−c−1 which we write

G0=−c−1=(Gd
0 −Gf

0 ) 1+Gf
0 E (A.11)

Forming − c ·G0=1 we obtain the equations for Gd
0 , Gf

0 in terms of cd, cf.
After some algebra we obtain

Gf
0 =(cd+(M − 1)cf)−1 · cf · (cd − cf)−1 (A.12)

Gd
0 =(cd+(M − 1)cf)−1 · [cf − (cd+(M − 1)cf)] · (cd − cf)−1 (A.13)

In view of (A.12), (A.13), (A.6), and (A.7) we shall need inverses of the
matrices of the form:

X — R 0 0 A 0
0 0 0 B
AŒ 0 C 0
0 B 0 D

S (A.14)

Although some of the elements of matrix are operators, they commute and
can be treated as c-numbers. We find the following whose correctness can
be directly verified:21

21 A way to find this inverse is to notice that X consists of four 2 × 2 submatrices of the forms
x1+ysz where x, y are some numbers and 1 and sz are, respecitvely, 2 × 2 unit matrix and
the Pauli spin matrix. The inverse of X has the same form with the coefficients determined
by the condition X · X−1=(4 × 4 unit matrix).

X−1=R − C
AAŒ

0 1
AŒ

0
0 − D

B2 0 1
B

1
A 0 0 0
0 1

B 0 0

S (A.15)
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Putting all these results together and with further algebra we arrive at the
following expressions for the G0’s:

(Gf
0 )ttŒ (k)=R

Uk(ttŒ) 0 Vk(tŒ) 0
0 0 0 0

{V}k(t) 0 0 0
0 0 0 0

S d(t − tŒ) (A.16)

(Gd
0 )ttŒ(k)=RLT[Uk(ttŒ) − G1

k(t) G1
k(tŒ)] 0 Wk(tŒ) 0

0 4T
Ls

0 2i
Ls

Wk(t) 0 0 0
0 2i

Ls
0 0

S d(t − tŒ)

(A.17)

where

Uk(ttŒ) —
1

M
(G1

k(t) G1
k(tŒ) − G2

k(t) G2
k(tŒ)), Vk(t) —

1
M

(G1
k(t) − G2

k(t))

G1
k(t) — ( − i“t − iL(u2+Uk))−1,

G2
k(t) — 1 − i“t − iL 1u2+Uk −

g
Mb

22−1

Wk(t) — − G1
k(t)+Vk(t) (A.18)

Now, the Hartree term − cabcxc mentioned in connection with (7.84) arises
in our context by the fact that the average OsP, which is written simply as s

does not in general vanish. From (7.60) we can infer that for large Ls the
unaverged s obeys the Langevin like equation as

s(r, t)=−i `u4 f(r, t)2+(Gaussian noise) (A.19)

Hence we can deduce if OfP=0

Os(r, t)P=−i `u4Of(r, t)2P=−i `u4 C
aa(r, t; r, t) (A.20)

which produces the Hartree term.
Now there are two ways to get SCSA equations:

1. Use (7.89). Since we know the forms of Gd, (A.3), and the corre-
sponding expression for Gf, we need to know the form of G−1 appearing on

Dynamical van der Waals Model of Glassy Behavior 1301



the l.h.s. of (7.89) to obtain SCSA equations. For this purpose we can use
general relationships connecting Gd, Gf on one hand, and Cd, Cf appearing
in the definition (A.21) below.

2. Use (7.90). Here we need to know the expressions for G0 appear-
ing on the r.h.s. of (7.90). These are just given by (A.16) and (A.17).

As was said above we can find the C’s defined through

G−1=(Cd − Cf) 1+CfE (A.21)

Formally this is the same as the relationship between G0 and G−1
0 =−c

obtained before. See (A.12) and (A.13). Sructural similarity to the earlier
case for the bare correlation and response functions is closer if we can
assume that

Rd, f
fs =Rd, f

sf =Cd, f
fs =Cd, f

sf =0 (A.22)
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